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Abstract. The GRACE satellite mission will resolve temporal variations in

gravity orders of magnitude more accurately and to considerably higher resolution

than any existing satellite. Gravitational e�ects of atmospheric mass over land will

be removed prior to estimating the gravitational �eld, using surface pressure �elds

generated global weather forecast centers. To recover the continental hydrological signal

with an accuracy of 1 cm of equivalent water thickness down to scales of a few hundred

km, atmospheric pressure must be known to an accuracy of 1 mbar or better. We

estimate errors in analyzed pressure �elds, and the impact of those errors on GRACE

surface mass estimates, by comparing analyzed �elds with barometric surface pressure

measurements in the United States and north Africa/Arabian peninsula. We consider

(1) the error in 30-day averages of the pressure �eld, signi�cant because the �nal

GRACE product will be a smoothed map averaged from measurements collected over

30-day intervals; and (2) the short-period error in the pressure �elds, which would be

aliased by GRACE orbital passes. Because the GRACE results will average surface

mass over scales of several hundred km, we assess the pressure �eld accuracy averaged

over those same spatial scales. The atmospheric error over the 30-day averaging period,

which will map directly into GRACE data, is estimated to be generally < 0:5 mbar, and

consequently will be adequate to remove the atmospheric contribution from GRACE

hydrological estimates to sub-cm levels. However, the short-period error in the pressure

�eld, which would alias into GRACE data, could potentially contribute as much as 1 cm

of water thickness equivalent error. We also show that, given a suÆciently large density

of barometers in a region, an accurate surface pressure �eld can be constructed from
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surface pressure measurements alone.
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1. Introduction

Most modern, high-precision geodetic measurements of time variable processes

can bene�t from accurate knowledge of atmospheric pressure. For example, precise

space-based positioning methods (e.g. Global Positioning System (GPS), Very-Long-

Baseline-Interferometry, Satellite Laser Ranging) require estimates of surface pressure

and temperature to model the dry air contribution to the signal delay [e.g., Rocken et

al., 1993]. The Earth's elastic response to loading by atmospheric pressure can cause

vertical crustal displacements of up to 5 mm [e.g., Van Dam et al., 1994], and the direct

attraction of the atmosphere can cause surface gravity signals of several �gals [Neibauer

and Faller, 1992], both of which can contaminate estimates of tectonic motion. Accurate

knowledge of the atmospheric mass distribution will be particularly important for the

coming new generation of satellite gravity missions, and especially for GRACE (Gravity

Recovery and Climate Experiment). Errors in the atmospheric contributions will likely

be the largest source of error in GRACE measurements of time variable gravity over

land, at scales of about 300 km and larger.

GRACE, under the joint sponsorship of NASA and the DLR (Deutsches Zentrum

fur Luft und Raumfahrt), is scheduled for a 2001 launch with a nominal 5-year lifetime.

GRACE will consist of 2 satellites in low-earth orbit (an initial altitude of 450-500 km)

that range to each other across a few hundred km of separation using microwave phase

measurements. Onboard GPS receivers will determine the position of each spacecraft

in a geocentric reference frame. The geoid estimate will combine the GPS location
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with ranging information and subtract out non-gravitational accelerations measured

by onboard accelerometers. The resulting data will map the gravity �eld orders of

magnitude more accurately, and to considerably higher spatial resolution, than any

existing satellite.

GRACE will resolve temporal variations in gravity at length scales of a few hundred

km and larger, and produce a complete global map once every 30 days. Temporal

variations in gravity can be used to study a large number of problems in several

disciplines, from monitoring changes in water, snow, and ice on land, to determining

changes in ocean bottom pressure, to studying post-glacial rebound (PGR) of the solid

earth. Comprehensive descriptions of these and other applications are given by Dickey

et al. [1997] and Wahr et al. [1998].

Wahr et al. [1998] showed that GRACE has the potential to deliver 30-day

estimates of surface mass at scales of a few hundred km and greater, with accuracies

of better than 1 cm of equivalent water thickness over land and of a few tenths of a

mbar or better in ocean bottom pressure. This conclusion was based on an analysis of

synthetic geoid data and included the e�ects of contamination from other geophysical

signals as well as the current best estimates of GRACE measurement errors. The

authors found that the limiting error source for estimating changes in continental

water storage at wavelengths greater than about 300 km will be contamination from

the changing distribution of atmospheric mass. Satellite gravity measurements are

incapable of separating the gravitational e�ects of the atmosphere from those of the

underlying stored water. Analyzed atmospheric �elds will be used to remove the e�ects
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of the atmosphere over land from GRACE measurements, prior to constructing gravity

solutions. But there will be errors in those �elds which will then map into errors in

GRACE residual hydrological estimates. In order to recover the continental hydrological

signal with an accuracy of 1 cm of equivalent water thickness, the atmospheric pressure

needs to be known to an accuracy of 1 mbar (i.e., the atmospheric mass needed to

generate 1 mbar of pressure at the earth's surface is equivalent to the mass of 1 cm of

water). Atmospheric errors are far less of a problem for GRACE estimates of ocean

bottom pressure. Bottom pressure re
ects the weight of the total overlying oceanic

and atmospheric mass, and this total mass is also what determines the gravity signal.

Thus there is no need to remove the e�ects of the atmosphere over the oceans from the

GRACE measurements when inferring bottom pressure variability.

In their simulation of GRACE data, Wahr et al. [1998] assumed that the

gravitational e�ects of atmospheric mass over land will be removed using surface

pressure �elds generated by one of the global weather forecast centers. They simulated

errors in the pressure �elds by taking the di�erence between 30 day averages of the

pressure �elds generated by the ECMWF (European Center for Medium Range Weather

Forecasts) and those generated by the NCEP (National Centers for Environmental

Prediction), and dividing that di�erence by
p
2. The factor of

p
2 was included under

the assumption that the ECMWF and NCEP �elds are about equally accurate and

that errors in the �elds are uncorrelated, so that the two �elds contribute equally to

the variance of the di�erence. To provide continuity with this previous analysis, when

comparing the two analyzed �elds in this paper we estimate the di�erence of the two
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dividing by
p
2. For this reason, in the remainder of the paper we will describe the

comparisons of two analyzed �elds as rms error and refer to comparisons between

measurements and analyzed �elds (without the
p
2 factor) as rms di�erence. Note that

in our analysis we assume that the observations have negligible error. In the discussion

in section 5 we will show that this is a reasonable assumption.

There are two possible problems with Wahr et al.'s method of estimating the errors

in the atmospheric corrections to GRACE. One is that the gravitational signal from

the atmosphere is somewhat sensitive to how mass is distributed vertically through the

atmospheric column. Surface pressure, on the other hand, depends only on the total

mass in that column. Ignoring the e�ects of the vertical mass distribution is equivalent

to assuming that all atmospheric mass variations occur in an in�nitely thin layer at the

Earth's surface. Swenson and Wahr [2000] assess this assumption by comparing gravity

results computed using geopotential height �elds to those computed using surface

pressure �elds. They concluded that the thin layer assumption introduces errors into

GRACE estimates of surface mass with an rms of less than 1.0 mm of equivalent water

thickness when averaged over all latitudes (though rms di�erences at some high latitude

locations can be as large as 2-4 mm).

The other possible problem is that the ECMWF and NCEP pressure �elds are

likely to have errors in common, and these would not be included in Wahr et al.'s

[1998] ECMWF/NCEP di�erences. It is thus desirable to �nd some alternative method

of estimating errors in the pressure �elds and their impact on GRACE surface mass

estimates, including the e�ects of any common errors. This is the main purpose of our
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paper.

We examine how well the surface pressure �elds from the ECMWF and

NCEP/NCAR (National Center for Atmospheric Research) Reanalysis models

reproduce barometric measurements of surface pressure in two regions: the United

States and north Africa/Arabian peninsula (Figure 1). Both regions have large areas Figure 1

of low and high topographic relief, but whereas the United States has numerous

high-quality barometric observations, pressure measurements in north Africa/Arabian

peninsula are sparser, have more temporal gaps and more and larger outliers. We have

considered Egypt and the Arabian peninsula because both have been proposed as focus

regions for veri�cation of GRACE accuracy, due to their extremely low precipitation and

relatively simple hydrologic systems. The United States can be considered representative

of the best-case scenario for observational constraints of surface pressure, while the

distribution of pressure measurements in north Africa/Arabian peninsula is probably

more typical of the global coverage. We base much of our comparison on the assumption

that errors in the barometric measurements are much smaller than errors in the analyzed

pressure �elds. Most of the pressure measurements used in our comparison were

assimilated in the course of the modeling and analysis procedure, so that the e�ects of

measurement errors may be common to both pressure �elds, and short scale variability

that is spatially aliased by the measurements could be aliased into both. In section 5 of

the paper we will carefully examine this assumption.

A secondary objective of this paper is to verify whether or not the surface

pressure �eld over a given region can be constructed accurately from surface pressure
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measurements alone. Is it feasible to expect that a network of barometers could deliver

atmospheric corrections to GRACE that might be better than those obtainable with

ECMWF or NCEP/NCAR gridded �elds? For this issue we focus speci�cally on the

United States.

When estimating the e�ects of atmospheric pressure errors on GRACE, it is useful

to separate those errors into two components: (1) the pressure errors averaged over

30-day intervals, which are relevant because GRACE will average the measurements

collected over 30-day periods to produce geoid maps; and (2) short-period pressure

errors, which will be undersampled by GRACE orbital passes and hence will not average

out entirely in the GRACE geoid maps. In this paper we will consider both components

of the �nal error.

2. Preliminaries

To motivate this analysis we �rst describe the characteristics of GRACE data, and

how these data will likely be used to estimate surface mass variability. We also discuss

here the data sets used in this paper.

2.1. Spatial averaging

The Earth's global gravity �eld is commonly described in terms of the shape of the

geoid: i.e., the equipotential surface corresponding to mean sea level over the oceans.

The geoid can be expanded in a spherical harmonic representation as:
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N(�; �) = a
1X
l=0

lX
m=�l

~Plm(cos �)fClm cosm�+ Slm sinm�g; (1)

where a is the Earth's radius, � and � are colatitude and east longitude, Clm and Slm

are dimensionless coeÆcients, and ~Plm are the normalized associated Legendre functions

[e.g. Chao and Gross, 1987].

Once every 30 days GRACE will provide a geoid model (i.e., numerical values for

Clm and Slm) up to degree and order (l and m) of about 100, corresponding to spatial

scales (i.e. half-wavelengths) of about 200 km and greater. Changes in Clm and Slm are

related to changes in the Earth's density distribution, ��(r; �; �) via [Wahr et al., 1998]:
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�Slm

9>>=
>>;
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a
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>>;
sin � d� d� dr

(2)

where �ave (=5517 kg=m
3) is the average density of the Earth, and �Clm and �Slm are

changes in the spherical harmonic coeÆcients of the geoid.

Suppose that �� is concentrated in a thin layer of thickness H at the Earth's

surface, which should be thick enough to include those portions of the atmosphere,

oceans, ice caps, and below-ground water storage with signi�cant mass 
uctuations.

H thus approximately corresponds to the thickness of the atmosphere and is of the

order of 10-15 km. Note that because of the radial integral in (2), GRACE will be
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unable to resolve mass anomalies at di�erent radial positions, and so will be incapable

of distinguishing between water on the surface, in the soil, or in subsoil layers, and will

also be unable to discriminate between water, snow, ice or atmospheric mass variations.

This is the reason that variations in atmospheric mass will contaminate estimates of

continental water storage (if the latter are to be measured by GRACE and the former

cannot be accurately eliminated).

Because H is much less than the shortest spatial scale provided by GRACE, the

factor (r=a)l+2 in (2) can be approximated as 1, so that �Clm and �Slm can be related

to the change in surface mass density ��(�; �) =
R
thin layer

��(r; �; �) dr . That relation

can be inverted to give �� in terms of the �Clm and �Slm's (see Wahr et al. [1998]'s

equation (14)).

In principle, an estimate of �� at any individual point (�; �) requires knowledge

of the �Clm and �Slm's at all wavelengths. But not only will GRACE deliver 30-day

coeÆcients only up to about l=100, but the accuracy of those coeÆcients will decrease

rapidly with increasing l, so that point-wise estimates of �� would be too inaccurate

to be useful. Instead, what GRACE will be able to deliver accurately will be spatial

averages of surface mass over regions of a few hundred kilometers in scale. For this

paper, we will follow Wahr et al. [1998], and construct the spatial average:

��(�; �) =

Z
��(�0; �0)W (
) sin�0 d�0 d�0 (3)

where 
 is the angular distance between the two points (�; �) and (�0; �0), and W (
) is

the normalized gaussian function developed by Jekeli [1981] and depicted in Figure 2: Figure 2
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W (
) =
b

2�

exp[�b(1� cos 
)]

1� e�2b
: (4)

where

b =
ln(2)

(1� cos(rW=a))
(5)

Here W has been normalized so that its global integral is 1, and rW is the distance along

the Earth's surface at which W (
) has decreased to half the value it had at 
 = 0. We

will refer to rW as the averaging radius. GRACE measurements will deliver accurate

estimates of �� for values of rW of a few hundred kilometers and greater.

2.2. Data

The main purpose of this paper is to estimate how accurately the atmospheric

contribution to the time-variable geoid can be determined. To do this we compare

analyzed surface pressure �elds from ECMWF and NCEP/NCAR with surface pressure

observations. We also examine the possibility of using barometric measurements alone,

without any input from the pressure �elds generated by global circulation models, to

reproduce the surface pressure �elds. To examine each of these issues, we use 6-hourly

gridded global surface pressure �elds from 1998, 1460 �elds in all. We use NCEP/NCAR

Reanalysis data, sampled on 2.5Æ � 2.5Æ global grids [Kalnay et al., 1996], and ECMWF

analysis data, sampled on a global gaussian grid spacing of 1.125Æ [ECMWF, 1995].

Both centers have an analysis at higher resolution; however these data sets were not

available to us and generally are not available to outside users.

The analyzed pressure �elds were compared with 6-hourly barometric surface
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pressure measurements from the NCEP global surface observations data set. NCEP

collects these data on an operational basis to serve as constraints on environmental

models, and some quality control is applied. A signi�cant problem arises in that many

of these same data are also assimilated into NCEP and ECMWF global circulation

models, and so the models and the observations we are comparing here are not fully

independent. Consequently it is diÆcult to make a clear estimate of the true error in

the models. But as we will demonstrate, it is possible to assign upper and lower bounds

to the error. The NCEP observational data sets include information about barometer

elevations, but the barometer measurements are subject to transcription and other

errors which must be addressed. We used a semivariance analysis [Davis 1986] in which

the semivariance S2 of all measurements spaced six hours apart was estimated from the

data at a given site. Then all measurements which di�ered from the temporally closest

measurements at > 4S (99:95% con�dence) were considered outliers in the pressure

measurement time series and removed from the comparisons (Figure 3). Figure 3

To compare the observed and analyzed surface pressure �elds we also need surface

temperature and topography data for the analyzed �eld. For this we use ECMWF and

NCEP/NCAR 6-hourly temperature and topography �elds sampled on the same grid as

the corresponding analyzed surface pressure �elds. All data sets used in this paper were

provided by the NCAR DSS (Data Support Section) archive.

As already noted, the analyzed ECMWF and NCEP/NCAR pressure �elds are

not independent of the surface pressure observations we will compare them with,

because most of the available pressure observations were assimilated into the models
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when constructing the analyzed �elds (96% of the observations available in the United

states were assimilated and 82% in north Africa/Arabian peninsula). Roughly speaking

the 3-D multivariate atmospheric analyses made by ECMWF and NCEP incorporate

observations as:

Analysis(t) = � � observation(t� 3hours) + (1� �) � guess

where t is time and the guess is a 6 hour forecast initialized using a previous

analysis at (t � 6hrs). � and (1 � �) can be interpreted as the inverse square of

the assumed error in observations and the forecast respectively. Because di�erent

observations have di�erent assumed errors (e.g., radiosondes are supposed to be more

accurate than satellite data), the value of � is not quite unambiguous. Most centers

appear to have a 'global' � in the 0.3-0.5 range. However, the real purpose of assimilating

observations into these analyses is not necessarily to better describe the current state of

the atmosphere, but to serve as initial conditions for 10 day forecasts. Consequently,

the guess �eld is weighted as much as, or more than the observation to avoid initial

\shocks" (i.e., unstable oscillations) when making a forecast.

3. Calculation of the atmospheric surface pressure error

We estimate the error in analyzed surface pressure �elds from ECMWF Analysis

and NCEP/NCAR Reanalysis by comparing with surface pressure observations. The

GRACE �nal error will be some combination of the mean error over the 30-day averaging

period and the error from unmodeled high frequency pressure variations that are aliased

by orbital undersampling. The 30-day pressure errors will map directly into the 30-day
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GRACE averages. But the aliasing error will depend in a complicated manner on

the GRACE orbital con�guration, and cannot be predicted without detailed orbital

simulations.

We will examine two di�erent estimates of the error: (1) the rms di�erence between

model and observations averaged over twelve consecutive 30-day periods during 1998;

and (2) the 6 hourly rms di�erence (i.e., without time averaging) over that same

year. Because the GRACE observations will spatially average the mass variations,

we use the normalized averaging function W in equation (4) to spatially average the

error. The 6 hourly rms di�erence does not map directly into an error in the GRACE

estimate of changes in surface mass because a high frequency error in one region will

not necessarily be aliased into a 30-day value over only that same region. Still, the 6

hourly rms di�erences do provide some measure of the amplitude of the aliased signal.

We expect our 6-hourly comparisons may over-estimate the total error, since the process

of constructing 30-day GRACE values will presumably smooth out some fraction of the

high frequency contributions.

3.1. Interpolation of analyzed pressure to barometer locations

The analyzed pressure �elds are de�ned on a regular discretization over the globe

whereas the barometer locations are irregularly spaced. For this reason we horizontally

interpolate the analyzed pressure �elds to the barometer locations (or vice versa) prior to

calculating the rms di�erence between the two. For these comparisons we will consider

interpolations going both directions (i.e., (1) from the analyzed �eld to the barometer
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locations, and (2) from the observation �eld to the model grid point). To simplify the

description of how the interpolation is performed, we describe here just the interpolation

from analyzed pressure �elds to the barometer locations. The interpolation going in the

opposite direction is completely analogous however.

Because the barometer is generally at a di�erent elevation than are the nearby

model grid points, the analyzed surface pressure is �rst adjusted to the elevation of

the barometer prior to horizontal interpolation. For a given location, we assume the

relationship between pressure at two di�erent elevations, h1 and h2, corresponds to that

of a dry, hydrostatic atmosphere and a uniform lapse rate of 0:0065 ÆKm�1 [Haurwitz,

1941]:

pm(h2) = pm(h1)

�
1 +

0:0065 j h1 � h2 j
T1

� sign(h1�h2)

�

(6)

where pm(hi) is the analyzed pressure at elevation hi, T1 is the surface temperature at

height h1 in
ÆK, � = 0:0065Rd=g, where g is the gravitational acceleration and Rd(= 287

J K�1 kg�1) is the gas constant for dry air.

We �rst reduce the pressure from the four nearest grid points of the analyzed

�eld, A, B, C and D, from their elevations (hA, hB, hC , hD) to the elevation hZ of

the barometer location Z using (6). Then we calculate the 2-dimensional Lagrange

polynomial interpolation of the four reduced values of analyzed surface pressure to the

barometer location Z.
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3.2. The gaussian average of rms surface pressure di�erences

To simulate the signal delivered by GRACE, we calculate spatial averages using the

gaussian weighting function described in (4) and shown in Figure 2. We approximate

the gaussian average FG(P ), about the point P , of a function f de�ned only at a set of

N discrete points, as:

FG(P ) =

NP
i=1

fiW (
i)

NP
i=1

W (
i)

(7)

where P is the center location of the gaussian de�ned by W (
) (see equation 4), 
i

is the angular distance between P and the sampled point i, W (
i) is the value of

the weighting function at the point i where f is de�ned, and N is the total number

of discrete samples of f . In our case, fi will be the di�erence between two di�erent

surface pressure values at the location i. This di�erence is most often between the

observed pressure and either the ECMWF or NCEP/NCAR analyzed pressure �eld,

interpolated to the location of the i'th barometer. For comparisons of the ECMWF

and NCEP/NCAR analyzed pressure �elds with each other, the di�erence is calculated

after reduction and interpolation of the NCEP/NCAR analyzed �eld to the ECMWF

grid points. Once we have computed time series of FG(P ) for both pressure �elds at

a point P , we remove the yearly means from those time series and compute the rms

of the residual di�erence between the two. The rms value is an estimate of the size of

the pressure �eld di�erence, spatially averaged about the location P . We evaluate the

rms di�erence of gaussian averages for values of P evenly spaced at every 0:2Æ interval
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of latitude and longitude over the region of interest, using a 250-km gaussian radius.

Note that near the edges of the map, di�erences are in general slightly larger because

the comparison does not include points outside the map area. We evaluate this rms

error both for 30-day averages of the pressure di�erences and for the original 6-hourly

values (see section 1). We assume a gaussian averaging radius (rW in (4)) of 250

km, since that is the order of the smallest rW over which GRACE will provide useful

hydrological estimates. We calculate the rms di�erence between analyzed pressure �elds

and barometric measurements only in continental regions, since our focus here is on

atmospheric contamination of GRACE hydrological estimates. Oceanic surface pressure

errors will not impact the GRACE surface mass estimates, for reasons discussed in the

introduction.

4. Results

4.1. Rms di�erences for the 30-day averages

Sample time series of observed data and interpolated analyzed �elds are shown

in Figure 4 for two sites in the United States, one in a low relief area and one in a Figure 4

mountainous region. The Figure shows a good agreement between the time series.

The rms values of 30-day averages of these di�erences, computed after removing the

temporal mean, are contoured for the United States in Figures 5a and 5b for ECMWF Figures 5a

5band NCEP/NCAR analyzed �elds respectively. The rms di�erence is generally < 0:2

mbar in low-relief areas for both ECMWF and NCEP/NCAR data, and larger in areas
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of high elevation: up to 0:35 mbar for NCEP/NCAR and slightly more for ECMWF.

Larger rms is expected in association with high elevation because the coarse spatial

resolution of the models (> 100 km) is inadequate to resolve complex orographic e�ects

on temperature, humidity and pressure, and because equation (6) could be problematic

for large vertical adjustments.

Figures 5c and 5d depict the rms di�erences for the 30-day averages over north Figures 5c

5dAfrica/Arabian peninsula. In this area the distribution of barometers is much less

dense than over the U.S. and the observations often contain large gaps. This partially

explains the rms > 0:3 mbar in low-relief southern Egypt. Otherwise, di�erences in

low-lying areas are generally � 0:2 mbar for both ECMWF and NCEP/NCAR, except

in a few locations where particularly sparse observations yield larger rms around 0:3

mbar. However in the mountainous regions of the Turkish-Iranian Plateau, where the

observation sites are denser, the rms di�erence for ECMWF exceeds 0:4 mbar, with

values of up to � 0:7 mbar around the Caspian Sea. In the same area the rms di�erence

for NCEP/NCAR is � 0:3 mbar and > 0:4 near the Caspian Sea.

One of the problems with the comparison depicted in Figure (5) is that the

ECMWF and NCEP/NCAR analyzed pressure �elds are not independent of the surface

pressure observations we are comparing them with. By calculating the rms di�erence at

the barometer location, we are comparing to assimilated observations at the point where

they have been assimilated. Consequently the comparison does not necessary re
ect the

accuracy of the analyzed �elds where there are no nearby observations to assimilate.

Hence we would expect the rms di�erence calculated at the barometer locations to
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approximate a lower bound estimate of the error in the analyzed �elds.

To estimate the error in the analyzed pressure �elds where there are no assimilated

barometric measurements, we also interpolated surface pressure observations to the grid

discretization of the analyzed �elds. The analyzed �elds are \interpolating" the pressure

measurements using the governing equations of atmospheric circulation and with the

aid of other datasets (including radiosonde pro�les and wind velocities, which are a

sensitive indicator of the pressure gradient). Hence the analyzed �elds should produce

a very di�erent (and, ideally, much more accurate) \interpolation" of the assimilated

barometric measurements than the simple Lagrange polynomial we have used here.

Consequently, by interpolating barometric observations to the model grid and then

comparing, we should get an upper-bound estimate of the error in the analyzed �elds

consisting of the true error plus di�erences due to sampling limitations and interpolation

error. The interpolation was done in essentially the same manner as that from the

model grid to the barometer locations, except that the temperature at each barometer

site (needed for the vertical reduction in equation (6)) was �rst interpolated and reduced

from the analyzed �elds.

There are other reasons why this comparison is expected to overestimate the true

error in the analyzed �eld. For example, there are gaps in the observed time series

(whereas the analyzed �eld time series were complete). Consequently, if at time t one

(or more) of the 4 nearest barometers had no pressure measurement, the next nearest

barometer was used, potentially resulting in interpolation from a very large distance.

Moreover, any errors in the reduction and interpolation that were bias errors going from
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the model grid to the barometers (and hence are removed by removing the means) are

not necessarily bias errors in the interpolation of barometers to the model grid, because

di�erent stations are used for the interpolation at di�erent times during the year.

Hence, by interpolating in both directions we are able to approximate both a lower

bound and an upper bound estimate of error. If we assume that the observations are

error-free (see the discussion in section 5 below), we can conclude that the true error

lies between these 2 estimates. Figures 6a-6b show the rms di�erence evaluated at Figures 6a

6bthe model discretization for the 30-day averages of the ECMWF and NCEP/NCAR

analyzed �eld, respectively, in the United States. Comparing these �gures with Figures

5a-5b we note that values in Figures 6a-6b are slightly larger but mainly < 0:2 mbar in

the low-lying areas for both ECMWF and NCEP/NCAR Reanalysis. Also in the Rocky

Mountain region the rms di�erence in Figures 6a-6b is generally only slightly larger than

in Figure 5a-5b. However in the upper Great Lakes region the rms di�erence is larger

for the comparison at the model grid points (> 0:2 mbar) than for the comparison at

the barometer location (� 0:1 mbar). Note that as we are not considering barometric

measurements over the ocean, the rms di�erence is larger near the coastlines, for the

same reason that it is larger at the margin of the map. For north Africa/Arabian

peninsula the results of the comparison at the model grid points are summarized by

a map average in Table 1. These values can be compared with the map averages for Table 1

comparisons at the barometer locations. The map averages for comparisons at the

model discretization are 40% � 90% larger.

The rms errors (see section 1) between 30-day averages of ECMWF and of
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NCEP/NCAR are shown in Figures 7a and 7c. In the United States (Figure 7a) the Figures 7a

7crms errors are low, < 0:1 mbar, in low-relief areas. At higher elevations the rms is

larger (> 0:1 mbar) and correlated with elevation. Note that the rms errors from the

analyzed �elds (Figure 7a) are substantially less than the rms di�erences between the

models and observations (Figures 5a-5b,6a-6b), indicating either that the errors in the

ECMWF and NCEP/NCAR analyzed �elds are not entirely independent, or that there

are non-negligible errors in the barometer observations. Also, the altitude di�erence

between grids is less than between grid and observations, so part of the reduction of error

could result from a decreased contribution of error introduced by vertical adjustment

using equation (6). However we will show in section 4.3 that this contribution is unlikely

to exceed a few tenths of a mbar. Figure 7c shows the rms error from the 2 models for

north Africa/Arabian peninsula region. The rms errors are quite low throughout the

entire area and are, again, slightly larger in the Turkish-Iranian Plateau.

4.2. Rms di�erences for the 6-hourly values

The maps in Figures 8a, 8b, 8c and 8d show rms di�erences between the 6-hourly Figures 8a

8b

8c

8d

values of the barometric measurements and the analyzed �elds at the barometer

locations with no time averaging, using a 250-km gaussian average. These maps provide

information about the short-period errors (i.e., semidiurnal, diurnal,...< 60 days) that

will alias into the GRACE 30-day estimates, in addition to the long-period (� 60 days)

that will map directly into GRACE estimates of surface mass change. This rms is

signi�cantly larger than the rms of the 30-day averages shown in Figures 5a|5d. In
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the United States, low-relief regions typically have rms < 0:5 mbar for both ECMWF

and NCEP/NCAR data (Figures 8a-8b). Larger rms di�erences in the west, up to 0:8

mbar, appear to be generally correlated with high topographic relief|particularly in the

case of the NCEP/NCAR pressure �eld. If we look at the rms di�erence between the

analyzed �elds and observations interpolated to the model grid points (Figures 6c-6d), Figures 6c

6dwe �nd that the values are larger than in Figures 8a-8b but that they are generally

< 1 mbar, except in the Great Lakes region. Figure 7b shows rms error of the 6-hourly Figure 7b

NCEP/NCAR and ECMWF data. The rms is < 0:4 mbar at low elevations and larger

(� 0:5 mbar) in the Rocky Mountain region.

Figures 8c{8d depict rms � 0:5 mbar in the Arabian peninsula for the NCEP/NCAR

pressure �eld, and slightly larger values for ECMWF. Large rms (> 1 mbar) in the south

probably results from the sparse barometer distribution and gaps in the timeseries.

Table 1 gives map averages for the comparisons at the model grid points, which are 20%

� 50% larger than those of the comparisons at the barometer locations. The rms error

of the 6-hourly �elds of the two models (Figure 7d) is generally small (� 0:4 mbar in Figure 7d

the Arabian peninsula and �< 0:6 mbar in north Africa), except for the Turkish-Iranian

Plateau where the rms is � 0:7 mbar.

4.3. Error sensitivity analysis

We expect that some fraction of the di�erences we have found between the

observations and the analyzed �elds is due to interpolation error, which will tend to

cause our rms di�erences to over-estimate the true error in the analyzed �elds. In this
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section, we discuss some of the possible sources of interpolation error for the particular

case of interpolation from the analyzed �eld to the barometer locations. The sources of

error that arise when interpolating the observations to the model grid points are similar.

Elevation reduction using equation (6) requires that we know the elevations of the

barometers. We assume there is a negligible error in the elevations of the analyzed

pressure �elds for purposes of reduction using equation (6). However, catalogued

elevations of the barometer sites can be signi�cantly erroneous. We checked the

barometer elevations by inverting equation (6) to solve for the elevation that best �t

the pressure di�erence from the nearest model points, and we rejected those sites that

di�ered by more than 20 m from the catalog elevation (less than 10 out of more than

400 sites were rejected). A sensitivity analysis of the error introduced by an incorrect

elevation reduction indicates that a 500 m error in station elevation can increase the

rms with mean removed by as much as 1.3 mbar, where a 20 m error would increase the

rms by � 0:02 mbar.

In addition to the elevation change, equation (6) also depends on the surface air

temperature. Two di�erent temperature �elds were used for the two models: for the

NCEP/NCAR data we used the model temperature at 40 m above the ground surface,

whereas for ECMWF we used a 2 m air temperature (because the 40 m temperature

�eld was not available to us on the same grid discretization as the pressure �eld). Note

that the 40 m air temperature is more appropriate for adjustment of the surface pressure

to a new elevation using equation (6) because the 2 m surface temperature is subject to

noise due to boundary layer e�ects over continents.
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We performed a sensitivity analysis to determine the error introduced by using

an erroneous temperature �eld. We found that a bias error in temperature produces

negligible change in the pressure rms, but that random errors can have a more signi�cant

e�ect. Random errors in the temperature �eld of up to 10ÆK will produce negligible

changes in the rms of the pressure if the elevation of the measurement station is within

� 200 m of the mean elevation of the nearest model grid points. However, when the

station elevation di�ers by more than 200 m from the weighted mean model elevation

(as commonly occurs in mountainous regions), random errors in the temperature �eld

of the order of 1ÆK can in
uence the pressure correction signi�cantly.

For example, the station at TMGO (Table Mountain Gravity Observatory) near

Boulder, Colorado is about 500 m lower than the weighted mean of the nearest ECMWF

grid points. A 1:5ÆK rms temperature error at those grid points would produce a

0:2 mbar rms pressure error in the interpolation of pressure to TMGO. We note that

boundary layer e�ects can cause 2 m and 40 m estimates of air temperature to di�er

by as much as 1:5ÆK rms for the 6-hourly values. Consequently, the 6-hourly values of

interpolated pressure from ECMWF and NCEP/NCAR may di�er by up to a few tenths

of a mbar solely because of the di�erent temperature levels used. However, the 0.2 mbar

error that might be attributed to the elevation reduction represents only about 15% of

the total 1:35 mbar rms di�erence of the 6-hourly time series at TMGO. Consequently,

most of the rms di�erence at TMGO consists of a real discrepancy between model and

observation, and is not caused by errors in the interpolation/reduction of the model

pressure to the station location. Note also that the gaussian averaged rms di�erence
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between models and observations in the vicinity of TMGO (Figure 8a) is much less than

1.35 mbar; this is because the process of computing gaussian spatial averages reduces

di�erences that are associated with pressure variations on short spatial wavelengths.

This can be seen by comparing the numbers in the columns labeled \No Spatial

Averaging" in Tables 1 and 2, with those in the columns labeled \Gaussian Average". 2

In principle one should also consider the dependence of pressure on the speci�c

humidity, Q, by replacing T with T (1 + 0:6078Q) in equation (6) [Gill, 1982]. We

tested the error introduced by our implicit assumption that Q = 0 and we found that

the di�erence could introduce an error equivalent to up to 3Æ K rms di�erence in

temperature. On the basis of the sensitivity analysis we performed for the temperature

error, we expect that in low-relief areas the error introduced by our assumption is

negligible, but in areas with high relief this error can add signi�cantly to the pressure

rms.

To further test the dependence on speci�c humidity, we calculated the rms di�erence

for both the 30-day averages and the 6-hourly values for the NCEP/NCAR and the

ECMWF analyzed �elds. The rms di�erence reduced to the barometer elevations using

T (1 + 0:6078Q) were negligibly di�erent than those using just T in low-lying areas but

in high relief regions the rms di�erence was actually slightly larger after correcting for

Q. We attribute this to the fact that the water vapor content of the atmosphere can

change signi�cantly on scales of a few km. Hence the model discretization is too coarse

to adequately constrain the water vapor content.

We also considered the e�ect of a variable lapse rate on interpolation using (6).
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Swenson and Wahr [2000] derived an empirical linear relation between lapse rate and

temperature which we used in place of the 6:5ÆK km�1 lapse rate in equation (6). We

found that it produced a negligible change in the rms values (averaging less than 0:01

mbar).

From this sensitivity analysis we conclude that the errors introduced by interpolation

of the analysis �eld to the barometer locations are negligible. In the worst case (i.e.

using 2 m air temperature for ECMWF reduction in high relief regions) the contribution

to the rms di�erence is a few tenths of mbar, and so these errors can be neglected.

4.4. Surface pressure �eld from barometric measurements

An alternative means of removing the atmospheric mass contribution from the

gravity �eld delivered by GRACE would be to use the barometric measurements

themselves to estimate the large-scale pressure variations, particularly in those regions

(e.g. Antarctica) where the accuracy of the analyzed pressure �elds is suspect [Wahr et

al., 1998]. SuÆciently dense barometric measurements could conceivably provide a more

accurate estimate of the atmospheric mass contributions to GRACE in regions that are

poorly constrained by global analyses.

To demonstrate the accuracy with which surface pressure �elds could be

reconstructed from surface pressure measurements, we created a synthetic \observed"

data set by interpolating the ECMWF analyzed pressure �elds to the barometer locations

using the same interpolation method described previously. Then we interpolated both

the original ECMWF �elds and the version of ECMWF that had been interpolated
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to the irregularly-spaced barometric sites on to a regular grid with elevations de�ned

by ETOPO5 [Row et al., 1995]. We calculated the rms di�erences of 250-km gaussian

averages of the two re-sampled data sets for both the 30-day averages and the original

6-hourly values. The rms for the 30-day averages in the United States is small, < 0:1

mbar, with slightly larger values in the Rocky Mountain regions, � 0:3 to 0:5 mbar

(Figure 9a). Even the rms di�erences for the 6-hourly values (Figure 9b) are small, Figure 9a

Figure 9b< 0:2 mbar in 
at areas, and < 0:9 in mountainous areas. Thus, even in areas where

the analyzed pressure �elds are known to be a�ected by larger errors (e.g. Antarctica),

with an adequate barometer distribution it would be possible to reduce the atmospheric

contamination of the GRACE hydrology estimates to values of just a few mm of water.

We note however that this comparison is perhaps overly optimistic in that it assumes

no gaps in the data, which would almost certainly occur to degrade the comparison.

Also, if we were to instrument poorly-constrained areas of the globe, a perhaps better

alternative to using the pressure measurements directly would be to let NCEP and/or

ECMWF incorporate the measurements into their operational database for assimilation

into the analyzed �elds, and hence improve the models in those regions.

When we plot (not shown) the rms values contoured in Figures 9a and 9b as a

function of the number of barometers located within the near vicinity of the point

where the rms value has been calculated, we �nd a strong exponential relationship, with

greater station density resulting in decreased rms values. We estimate that to recover

the pressure �eld from interpolation alone with an accuracy of better than 1 mbar it is

necessary to have 0:4 barometric stations per 1Æ x 1Æ area (� 10,000 km2), and with
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0:8 barometers per 1Æ x 1Æ area the pressure �eld can be recovered with an accuracy of

better than 0:5 mbar.

5. Discussion and Conclusions

The accuracy with which GRACE can map the Earth's gravity �eld is limited

by several sources of error, including system-noise error in the satellite-to-satellite

microwave ranging measurements, accelerometer error, error in the ultrastable oscillator,

and orbit error. The accuracy depends somewhat on the orbital con�guration (on the

altitude and spacecraft separation, for example). However, system design is such that

the atmospheric mass correction represents the limiting factor when using GRACE

measurements to infer changes in water storage on land at wavelengths of about 300 km

and larger [Wahr et al., 1998].

We expect that errors in the estimation of surface pressure result in two end-member

contributions to errors in the GRACE hydrology estimates. If we assume that there

is no aliasing, so that atmospheric pressure errors at periods < 60 days are nulli�ed

by GRACE averages, then we need only consider the errors in the 30-day averages of

the pressure �elds. This is end-member (1). The e�ect of aliasing from high frequency

variations (semidiurnal, diurnal, and all signals with periods less than about 60 days)

into the GRACE solution is more complicated. Aliasing from a short-period pressure

error can a�ect the GRACE 30-day averages at locations well outside the region where

the pressure error was located. These aliasing errors are apt to be smaller than might

be inferred by just looking at the short-period pressure error, because some of that
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error will indeed be averaged out over each 30-day period. But for end-member (2) we

should assume, as a worst case scenario, that this averaging is totally ine�ective, so that

the rms error of the 6-hourly pressure �elds could be fully aliased by GRACE into the

30-day hydrology estimates. This would mean that rms error > 1 mbar (as seen for

example in the upper Great Lakes region of Figures 6c-6d) could introduce errors of

more than 1 cm of water mass equivalent into GRACE estimates of the hydrological

signal.

The largest source of uncertainty in our error estimates comes from the fact that

most of the pressure observations used in our comparisons are also assimilated into

the models. This has lead us to de�ne \lower bound" and \upper bound" estimates of

the error. Because of the assimilation, the results of comparisons where the analyzed

�elds are interpolated to the barometer locations (the \lower bound" estimate) could

underestimate the true error. For that estimate we �nd the rms di�erence between the

analyzed �elds and the barometer measurements only at the barometer locations where

data have been assimilated, and hence the rms di�erences do not re
ect the possibility

of errors in regions where there are no nearby observation points. In those \empty"

regions, we might expect the analyzed pressure �elds to be worse than elsewhere because

there were no pressure observations to assimilate. The latter possibility motivated

us to also calculate the rms di�erence between the analyzed �elds and observations

interpolated to the model grid points, where there may not be nearby measurements

(the \upper bound" estimate). Interpolation of the pressure measurements to the grid

points will introduce errors, even if the observations themselves are perfect, for the
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reasons described in section 4.1. We expect that the errors from simple Lagrangian

interpolation should be uncorrelated with the model errors, so that the variance of these

new pressure di�erences ought to be larger than the variance of the analyzed pressure

�eld errors alone, so long as the observed pressure values are error-free.

Errors in the pressure observations can cause our estimates to be either too large or

too small, depending on the e�ectiveness of the assimilation. For example, suppose the

barometric measurement error is large, and that the assimilation of pressure observations

has little signi�cant e�ect on the analyzed surface pressure �elds. Then the di�erence

between those analyzed �elds and the observations will have contributions from errors in

the observations, and this will cause our estimates of the errors in the analyzed �elds to

be in
ated. On the other hand, suppose the assimilation is highly e�ective, so that the

analyzed pressure �elds are forced to agree closely with the pressure observations. This

would not hurt our error estimates if the observations were error-free, since then the

assimilation has simply caused the analyzed �elds to be more accurate. But if there is an

error in an observation, then the analyzed �eld would be forced towards the erroneous

value at that location. That error would be common to both the analyzed �eld and the

observation, and so would not show up in the di�erence. In this case, the di�erence

would underestimate the true error in the analyzed �eld. Since our error estimates are

already small enough to suggest that GRACE will be able to provide useful hydrological

information at most locations, it is the possibility that those estimates may be too low

that most concerns us here.

There are two potential contributions to observational error. One can be loosely
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termed as measurement error. This includes, of course, errors in the barometric

measurements themselves. Most present-day barometers provide short-term accuracies

of 0.08 mbar and have long-term stabilities of 0.1 mbar per year, with overall

uncertainties in the �eld estimated to be on the order of �0:15 mbar [C. Conquest,

personal communication]. This would cause our \upper bound" to underestimate the

true upper bound by at most only 0.15 mbar. Unfortunately, there can be other forms

of measurement error, including timing errors where measurements are made slightly

o�set to 00Z, 06Z, 12Z, or 18Z hours, but are assimilated as though they were made at

exactly one of those times (e.g., surface measurements by radiosondes, which comprise

20% of our stations, are sometimes collected as much as a few hours after the targeted

time if there is thunderstorm activity or equipment failure).

To independently assess the measurement error amplitude, we constructed a spatial

semivariance function from the pressure measurements. The spatial semivariance is 1/2

the mean square di�erence between measurements as a function of spatial separation

(as contrasted with the temporal semivariance used earlier for outlier removal, which

is the mean square di�erence as a function of elapsed time). To estimate the spatial

semivariance, we paired each barometric station in the U.S. with every other station,

binned the station pairs according to angular distance between stations in 0.1Æ (�11 km)

incremental bins, reduced the pressures of one station to the elevation of the other using

equation (6), and summed the squared di�erence of all simultaneous measurements for

all station pairs in the bin. The square root of the resulting estimate of semivariance is

shown in Figure 10. Figure 10



33

At large separations, where there is no apparent correlation between pressures at

the two locations, the root-semivariance should converge to the rms of the time-variable

component of surface pressure over the U.S.. In Figure 10 that large-distance limit is

between 6.5 and 7 mbar. The semivariance decreases with decreasing station separation

because the closer two stations are to one another, the more highly correlated their

pressure records will be. Note from Figure 10 that the semivariance is approximately

independent of distance for angular distances greater than about 15Æ. This implies that

pressure variations over the U.S. are uncorrelated at angular distances of about 15Æ and

larger.

In the limit of two stations at the same location, so that the pressure variations at

those stations ought to be perfectly correlated with one another, the root-semivariance

simply re
ects the measurement error. Note from Figure 10 that station pairs with

stations spaced less than 0.4Æ apart (10% of all U.S. radiosonde sites and 8% of all

other U.S. barometer locations are within 0.4 Æ of another U.S. barometer) have

root-semivariance less than 0.7 mbar, and that the root-semivariance appears to

intercept the y-axis (corresponding to zero station separation) at values that are no

larger than a few tenths of a mbar. This suggests that measurement errors, including

the timing errors from radiosondes, are indeed on the order of a few tenths of a mbar

or less. Furthermore, this is an estimate of the measurement error at a single station

and for a single 6-hourly value. The e�ects on the GRACE gaussian averages should be

smaller still, and the process of taking 30-day averages should reduce them even further

(compare, for example, the values shown in the \6-hourly", \No Spatial Averaging"
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columns in Tables 1 and 2, with the much smaller values shown in the \30-day average",

\Gaussian Average" columns).

The second potential source of error in the pressure observations is the possibility

of �ne-scale spatial variability in the pressure �eld at wavelengths shorter than can be

described by either the barometer distribution or the analyzed �elds. Scales this short

would be �ner than needed to correct GRACE data, but might still be coarse enough

that a point measurement obtained with a barometer might be partially unrepresentative

of the pressure �eld at the scale of the model grid. In this case, that short-scale pressure

component would be aliased into an erroneous larger-scale pressure variation in the

analyzed �eld that would not show up when we took the di�erence between the analyzed

�eld and the observation at that location.

This possible contamination by short-scale variability caused us to consider one

other approach, standard in meteorology, for estimating the absolute maximum error

in the analyzed �elds: comparing the barometric measurements with 6-hour forecast

�elds. The 6-hour forecasts use the complete set of three-dimensional analyzed �elds

from time t�(6 hours) as initial conditions, then propagate those �elds forward to time

t using the dynamical equations of the atmosphere. The input analyzed �elds assimilate

observations taken at time t�(6 hours). But neither they, nor the resulting forecast �eld,

depend in any way on observations taken at time t. Thus the e�ects of measurement

errors and of short-scale pressure variability will a�ect the observations at time t and

the forecast �elds for time t di�erently (assuming the short-scale variability in the

observations is not signi�cantly correlated over 6 hours), and so will not cancel when
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taking the di�erences. This comparison will now overestimate the \true" error in the

analyzed �elds, both because the analyzed �elds at time t are certainly improved by the

assimilation of observations taken at time t, and because since the observational errors

are presumably uncorrelated with the errors in the forecast �elds, those observational

errors will now be contributing to the di�erences.

For this comparison we considered only the NCEP/NCAR 6-hour forecast �elds,

because the ECMWF forecasts were not available to us. The map average for the

comparison at the barometer locations is 0:34 mbar for the 30-day rms di�erence and

1:14 mbar for the 6-hourly rms di�erence over the U.S., and 0:34 mbar and 1:33 mbar

respectively for north Africa/Arabian peninsula. In Tables 1 and 2 we also report the

results of comparison at the model grid points.

Every comparison of gaussian-averaged, 30-day values shown in Tables 1 and 2

(i.e., the interpolation to either the barometer locations or the model grid points; and

the comparisons with either the analyzed �elds or the 6-hour forecast �elds) indicates

that the analyzed �elds will be adequate to remove the atmospheric contribution

to GRACE estimates of surface hydrological mass changes to an accuracy of better

than 0.5 cm of equivalent water thickness. The comparisons of 6-hourly �elds are

more ambiguous, with rms values slightly smaller than 1 mbar (equivalent to 1 cm of

equivalent water thickness) for most comparisons in the U.S. (excepting the comparison

between barometer measurements and 6-hour forecast, which exhibits slightly larger

average rms di�erence). Rms di�erence of 6-hourly �elds are slightly larger than 1 mbar

in north Africa/Arabia. The relevance of the 6-hourly values for GRACE, however, is
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not entirely clear. Only a detailed orbital simulation can clarify the temporal-aliasing

e�ects of the short-period atmospheric error on the GRACE mass estimates. In any

case, we note that all of the results presented here are for data from 1998. The resolution

of global circulation models will likely have greatly improved by the time of the GRACE

launch.

The e�ects of �ne-scale spatial variability of pressure and its impact on the analyzed

pressure �elds through the assimilation of observations should be investigated further,

and we intend to examine this phenomenon in future work. Also, our analysis has been

performed for only two regions: the United States and north Africa/Arabian peninsula.

One of the reasons why this study was not conducted on a global scale is that the

implications of this kind of analysis are unclear when barometric measurements are

sparse or have many gaps and outliers (e.g., as was found in some portions of the north

Africa/Arabian peninsula region). Nevertheless, these two regions are representative of

the level of error that the analyzed �eld would present in most continental areas. We

also conclude that previous estimates of error in the analyzed pressure �elds [Wahr et

al., 1998], which compared the ECMWF and NCEP pressure �elds assuming that errors

in the two �elds were uncorrelated, signi�cantly underestimate the true error in these

�elds. The errors in these two �elds are in fact partially correlated.

Another conclusion of this paper is that if the distribution of barometers is

suÆciently dense, then the pressure measurements can be used independently of

analyzed pressure �elds to correct for the e�ects of atmospheric mass variability. Our

analysis using ECMWF pressure �elds to create synthetic barometer measurements,
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suggests that the U.S. barometer network would be capable of delivering 30-day

gaussian-averages of surface pressure to an accuracy that is everywhere better than 0.5

mbar. This method, though, would be particularly useful for regions (e.g. Antarctica)

where the analyzed �elds may not currently be accurate enough to permit recovery of

the desired gravity signal. The barometric network in those regions is apt to be far less

complete than in the U.S.. In general, we found that with 0.4 barometers per 10,000

km2 area it should be possible to obtain an accuracy of about 1 mbar. (Though we

should point out that if a barometric network of this density were installed in some

target region, it seems likely that even better results could be obtained by assimilating

the data into the analyzed �elds, rather than to rely solely on interpolation of the

measurements.)

Note that our reconstruction of the pressure �eld from interpolated barometric

measurements represents the ideal case in which the measurement time series are free

from gaps and outliers. A potentially more serious problem is that when we constructed

the synthetic barometric observations to derive these accuracy estimates, we ignored

the possibility of pressure variability at spatial scales smaller than the 1.125Æ ECMWF

grid spacing. Any such short-scale variability in the real pressure observations could be

mistakenly aliased into the pressure �elds reconstructed from those observations. This

omission has motivated us to consider an entirely independent method of estimating the

error in reconstructing pressure �elds using observations: one in which we relied solely

on our existing set of observations, rather than on the analyzed �elds.

In this method, we calculated the error that would be associated with a kriging
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interpolation of the barometric measurements to the model grid points. Kriging uses

the semivariance properties of a �eld to generate the optimal interpolation [Davis,

1986]. The error in the interpolated values can be estimated as the dot product of the

interpolation weights with the semivariance at the corresponding distances. For values

of the semivariance we used the square of the smoothed root-semivariance shown as

the solid line in Figure 10. The average of the kriging interpolation error in the U.S.

over all measurements and at all continental grid points of the NCEP model was found

to be 0.75 mbar, or better than the desired 1 mbar level of accuracy for the GRACE

correction. Note that this error estimate implicitly incorporates the measurement error

(including timing errors), the errors related to the aliasing of �ne-scale spatial variations

in pressure, and the horizontal interpolation error caused by using a linear interpolation

to represent a more complicated spatial dependence. It also implicitly includes error due

to the presence of gaps in the measurement time series. Furthermore, this 0.75 mbar

error represents the error in the interpolated 6-hourly value at a single point. The error

in 30-day gaussian averages of GRACE data will be substantially smaller.

We also considered ways in which the atmospheric correction to GRACE data might

be improved, including to average the pressure �eld from ECMWF and NCEP/NCAR.

In this way we should reduce uncorrelated errors that are present in the two �elds.

Comparisons of (ECMWF+NCEP/NCAR)=2 to the barometric measurements are

shown in Tables 1 and 2. The improvement is very slight (0-18% improvement over the

better of the two rms di�erences) as a consequence of the fact that most of the error in

the analyzed �elds is correlated.
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Finally, we point out that for the purpose of this investigation, we always evaluated

the spatially averaged rms error of the analyzed pressure �elds, which obviously

underestimates the point error at a given location. Tables 1-2 show the map average

both with and without spatial averaging, and one will note that the spatial averaging

improves the comparison by more than 60% with respect to the error estimation without

spatial averaging.
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Figure Captions

Figure 1. Location map depicting topography of the two studied areas: United States (a),

and north Africa/Arabian peninsula (b).

Figure 2. Jekeli's gaussian weight function for radius rW = 250 km: map and cross section.

The cartoon depicts four observation sites below the gaussian cap. In the cross section, the

gray arrows indicate the values of W (
) that would weight the corresponding pressure values.

The weighted sum is assigned to the center of the gaussian.

Figure 3. A. Time series of surface pressure for the station south of Lake Nasser, Egypt. Gray

stars represent the original time series; black circles represent the time series after outliers have

been removed. B. Detail of Figure 3A.

Figure 4. A{D. Time series of surface pressure in a low relief area (Illinois): A. Observed (gray

stars) and interpolated ECMWF (continuous line) surface pressure; B. Residual of ECMWF

minus observed with means removed; C. Observed and interpolated NCEP/NCAR Reanalysis

surface pressure; D. Residual of NCEP/NCAR minus observed with means removed. E{H.

Time series of surface pressure in a high relief area (Nevada): E. Observed (gray stars) and in-

terpolated ECMWF (continuous line) surface pressure; F. Residual of ECMWF minus observed

with means removed; G. Observed and interpolated NCEP/NCAR Reanalysis surface pressure;

H. Residual of NCEP/NCAR minus observed with means removed.
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Figure 5. Rms di�erence of analyzed surface pressure �eld and barometric measurements for

means over the 30-day averaging period, calculated at the barometer locations. Circles are

barometer locations. Dashed lines are state boundaries. A. Rms di�erence of ECMWF and

barometric measurements in the United States; B. rms di�erence of NCEP/NCAR Reanalysis

and barometric measurements in the United States; C. rms di�erence of ECMWF and baro-

metric measurements in north Africa/Arabian peninsula; D. rms di�erence of NCEP/NCAR

Reanalysis and barometric measurements in north Africa/Arabian peninsula.

Figure 6. Rms di�erence of analyzed surface pressure �eld and barometric measurements in

the United States, calculated at the analyzed grid points. A. Rms di�erence of ECMWF and

barometric measurements for means over the 30-day averaging period; B. 6-hourly rms di�erence

of ECMWF and barometric measurements; C. rms di�erence of NCEP/NCAR Reanalysis and

barometric measurements for means over the 30-day averaging period; D. 6-hourly rms di�erence

of NCEP/NCAR Reanalysis and barometric measurements.

Figure 7. Rms error of ECMWF and NCEP/NCAR Reanalysis, calculated as the di�erence

between the two �elds, divided by
p
2. A. Rms error for means over the 30-day averaging period

in the United States; B. 6-hourly rms error in the United States; C. rms error for means over

the 30-day averaging period in north Africa/Arabian peninsula; D. 6-hourly rms error in north

Africa/Arabian peninsula.
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Figure 8. Rms di�erence between analyzed surface pressure �eld and barometric measure-

ments, calculated at the barometer locations. A. 6-hourly rms di�erence of ECMWF and

barometric measurements in the United States; B. 6-hourly rms di�erence of NCEP/NCAR

reanalysis and barometric measurements in the United States; C. 6-hourly rms di�erence of

ECMWF and barometric measurements in north Africa/Arabian peninsula; D. 6-hourly rms

di�erence of NCEP/NCAR reanalysis and barometric measurements in north Africa/Arabian

peninsula.

Figure 9. Rms di�erence between the ECMWF and the synthetic \observation" datasets in

the United States. A. Results for the 30-day averages; B. 6-hourly results

Figure 10. Square root of the semivariance of pressure measurements for the United States in

0.1 degree bins (gray dots) and smoothed (black line).
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Tables
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Table 1. Map averages in north Africa/Arabian Peninsula, including the rms di�erences (or rms error

in the case of ECMWF-NCEP/NCAR) calculated with spatial averaging (equation 7, R=250 km), and

without.

Interpolated Interpolated

to barometer locations to model grid points

(mbar) (mbar)

Gaussian No Spatial Gaussian No Spatial

Average Average Average Average

30-day ECMWF� obs 0.36 0.70 0.43 0.71

average NCEP/NCAR � obs 0.26 0.62 0.48 0.63

ECMWF � NCEP/NCAR �� �� 0.21 0.37

NCEP/NCAR 6-hour forecast � obs 0.34 0.65 0.48 0.67

(ECMWF + NCEP/NCAR)/2 � obs 0.26 0.59 �� ��

ECMWF � obs 0.91 1.32 1.29 1.86

6-hourly NCEP/NCAR � obs 0.86 1.35 1.27 1.68

ECMWF � NCEP/NCAR �� �� 0.52 0.74

NCEP/NCAR 6-hour forecast � obs 1.33 1.70 1.61 1.98

(ECMWF + NCEP/NCAR)/2 � obs 0.79 1.21 �� ��
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Table 2. Map averages in the United States, including the rms di�erences (or rms error in the case of

ECMWF-NCEP/NCAR) calculated with spatial averaging (equation 7, R=250 km), and without.

Interpolated Interpolated

to barometer locations to model grid points

(mbar) (mbar)

Gaussian No Spatial Gaussian No Spatial

Average Average Average Average

30-day ECMWF � obs 0.17 0.59 0.26 0.53

average NCEP/NCAR � obs 0.16 0.64 0.23 0.45

ECMWF �NCEP/NCAR �� �� 0.12 0.19

NCEP/NCAR 6-hour forecast � obs 0.34 0.71 0.35 0.53

(ECMWF + NCEP/NCAR)/2 � obs 0.13 0.58 �� ��

ECMWF � obs 0.52 1.22 0.84 1.53

6-hourly NCEP/NCAR � obs 0.55 1.44 0.82 1.40

ECMWF �NCEP/NCAR �� �� 0.37 0.57

NCEP/NCAR 6-hour forecast � obs 1.14 1.79 1.29 1.77

(ECMWF + NCEP/NCAR)/2 � obs 0.46 1.21 �� ��
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